Holomorphic sectional curvature, nefness and Miyaoka–Yau type inequality

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Para-Kahler tangent bundles of constant para-holomorphic sectional curvature

We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...

متن کامل

Strictly Kähler-Berwald manifolds with constant‎ ‎holomorphic sectional curvature

In this paper‎, ‎the‎ ‎authors prove that a strictly Kähler-Berwald manifold with‎ ‎nonzero constant holomorphic sectional curvature must be a‎ Kähler manifold‎. 

متن کامل

strictly kähler-berwald manifolds with constant‎ ‎holomorphic sectional curvature

in this paper‎, ‎the‎ ‎authors prove that a strictly kähler-berwald manifold with‎ ‎nonzero constant holomorphic sectional curvature must be a‎ kähler manifold‎.

متن کامل

On the Canonical Line Bundle and Negative Holomorphic Sectional Curvature

We prove that a smooth complex projective threefold with a Kähler metric of negative holomorphic sectional curvature has ample canonical line bundle. In dimensions greater than three, we prove that, under equal assumptions, the nef dimension of the canonical line bundle is maximal. With certain additional assumptions, ampleness is again obtained. The methods used come from both complex differen...

متن کامل

Hardy’s Inequality and Curvature

A Hardy inequality of the form ∫ Ω |∇f(x)|dx ≥ ( p− 1 p )p ∫ Ω {1 + a(δ, ∂Ω)(x)} |f(x)| p δ(x)p dx, for all f ∈ C∞ 0 (Ω \ R(Ω)), is considered for p ∈ (1,∞), where Ω is a domain in R, n ≥ 2, R(Ω) is the ridge of Ω, and δ(x) is the distance from x ∈ Ω to the boundary ∂Ω. The main emphasis is on determining the dependance of a(δ, ∂Ω) on the geometric properties of ∂Ω. A Hardy inequality is also e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2020

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-020-02636-z